Microscopy[edit | edit source]

Cells vary in size. With few exceptions, we cannot see individual cells with the naked eye, so scientists use microscopes (micro- = “small”; -scope = “to look at”) to study them. A microscope is an instrument that magnifies an object. We photograph most cells with a microscope, so we can call these images micrographs.

The optics of a microscope’s lenses change the image orientation that the user sees. A specimen that is right-side up and facing right on the microscope slide will appear upside-down and facing left when one views through a microscope, and vice versa. Similarly, if one moves the slide left while looking through the microscope, it will appear to move right, and if one moves it down, it will seem to move up. This occurs because microscopes use two sets of lenses to magnify the image. Because of the manner by which light travels through the lenses, this two lens system produces an inverted image (binocular, or dissecting microscopes, work in a similar manner, but include an additional magnification system that makes the final image appear to be upright).

Light Microscopes[edit | edit source]

To give you a sense of cell size, a typical human red blood cell is about eight millionths of a meter or eight micrometers (abbreviated as eight μm) in diameter. A pin head is about two thousandths of a meter (two mm) in diameter. That means about 250 red blood cells could fit on a pinhead.

Most student microscopes are light microscopes. Visible light passes and bends through the lens system to enable the user to see the specimen. Light microscopes are advantageous for viewing living organisms, but since individual cells are generally transparent, their components are not distinguishable unless they are colored with special stains. Staining, however, usually kills the cells.

Light microscopes that undergraduates commonly use in the laboratory magnify up to approximately 400 times. Two parameters that are important in microscopy are magnification and resolving power. Magnification is the process of enlarging an object in appearance. Resolving power is the microscope's ability to distinguish two adjacent structures as separate: the higher the resolution, the better the image's clarity and detail. When one uses oil immersion lenses to study small objects, magnification usually increases to 1,000 times. In order to gain a better understanding of cellular structure and function, scientists typically use electron microscopes.

Electron Microscopes[edit | edit source]

In contrast to light microscopes, electron microscopes use a beam of electrons instead of a beam of light. Not only does this allow for higher magnification and, thus, more detail, it also provides higher resolving power. The method to prepare the specimen for viewing with an electron microscope kills the specimen. Electrons have short wavelengths (shorter than photons) that move best in a vacuum, so we cannot view living cells with an electron microscope.

In a scanning electron microscope, a beam of electrons moves back and forth across a cell’s surface, creating details of cell surface characteristics. In a transmission electron microscope, the electron beam penetrates the cell and provides details of a cell’s internal structures. As you might imagine, electron microscopes are significantly more bulky and expensive than light microscopes.

© Aug 31, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. Access for free at https://openstax.org/books/biology-2e/pages/1-introduction

Community content is available under CC-BY-SA unless otherwise noted.